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Abstract. A characteristic function is a special operator-valued analytic function defined
on the open unit ball of Cn associated with an n-tuple of commuting row contraction on some
Hilbert space. In this paper, we continue our study of the representations of n-tuples of com-
muting row contractions on Hilbert spaces, which have polynomial characteristic functions.
Gleason’s problem plays an important role in the representations of row contractions. We
further complement the representations of our row contractions by proving theorems concern-
ing factorizations of characteristic functions. We also emphasize the importance and the role
of the noncommutative operator theory and noncommutative varieties to the classification
problem of polynomial characteristic functions.

1. Introduction

Identifying and then computing a complete unitary invariant of (tuples of) bounded linear
operators on Hilbert spaces is one of the central objects in operator theory. From this point
of view, the notion of characteristic function of contractions on Hilbert spaces stands out in
its breadth of applications in function theory and operator theory.

Let T = (T1, . . . , Tn) be an n-tuple of commuting operators on a Hilbert space H, and let
T be a row contraction (that is,

∑n
i=1 TiT

∗
i ≤ IH). The characteristic function of T is the

B(DT ,DT ∗)-valued analytic function

θT (z1, . . . , zn) = [−T +DT ∗
(
IH −

n∑
i=1

ziT
∗
i

)−1
ZDT ]|DT

,

for all (z1, . . . , zn) ∈ Bn, where Bn denotes the open unit ball in Cn, DT = (I − T ∗T )
1
2 and

DT = ranDT (see Section 2 for more details).
In particular, if n = 1, then the above definition of θT becomes the well known and classical

Sz.-Nagy and Foias characteristic function of the single contraction T [19]. In this case,
clearly, θT admits a power series expansion on the disc D = {z ∈ C : |z| < 1}. This,
of course, immediately raises the natural question of the relationship between the class of
polynomial characteristic functions and the structure of corresponding contractions. To some
extent, the work of Foias and the third author [7] gives a satisfactory answer to this question.
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For instance: The characteristic function θT of a completely nonunitary contraction T on a
separable, infinite dimensional, complex Hilbert space H is a polynomial if and only if there
exist three closed subspaces H1,H0,H−1 of H with H = H1 ⊕ H0 ⊕ H−1, a pure isometry
S on H1, a nilpotent N on H0, and a pure co-isometry C on H−1, such that T admits the
following matrix representation

T =

S ∗ ∗
0 N ∗
0 0 C

 .
Moreover, the dimension of kerS∗ and dimension of kerC are unitary invariants of T and that
N , up to a quasi-similarity, is uniquely determined by T (see [7, Sections 4 and 5]). In the
follow-up paper, Foias, Pearcy and the third author [8] proved the following analytic result:
If θT is a polynomial of degree m, then there exist a Hilbert space M, a nilpotent operator
N of order m, a coisometry V1 ∈ B(DN∗ ⊕M,DT ∗), and an isometry V2 ∈ B(DT ,DN ⊕M),
such that

θT = V1

[
θN 0
0 IM

]
V2.

On the other hand, the approach of [7] was continued and extended to n-tuples of noncommut-
ing row contractions setting by Popescu in [17]. Also, the results of [8] were further extended
to Popescu’s noncommutative setting in [9].

It is worthwhile to note that Popescu (see [16] and other references therein) first recog-
nized that the notion of characteristic functions, a special class of multi-analytic operators
[14], plays a central role in multivariable operator theory and noncommutative function the-
ory. Moreover, his approach to noncommutative verities links up with the noncommutative
operator theory and commutative operator theory (see [13, 16] and Section 5).

This paper aims to complete the classification problem of contractions, which admits poly-
nomial characteristic functions. More precisely, we aim to classify n-tuples of commuting row
contractions, which admits polynomial characteristic functions.

The question of the structure of n-tuples of commuting row contractions is important in its
own right. However, on the other hand, Popescu’s approach to noncommutative verities unifies
many analytic and geometric questions concerning n-tuples of commuting row contractions.
From this point of view, it is also necessary to examine the noncommutative operator theoretic
technique and the classifications of noncommuting row contractions admitting polynomial
characteristic functions to our classification problem of tuples of commuting row contractions.
As we will see, some of the present techniques and results are similar to the one variable case
and the noncommutative case. However, commutativity property (a constrained property, as
identified by Popescu in [13, 16]) brings out more intrinsic function theoretic features to the
classification problem. Indeed, natural and satisfactory versions of the classification problem
(for instance, see Theorem 3.5) are related to the notion of Gleasons problem (see Definition
3.4). In this context, we also refer to the paragraph following Theorem 3.3.

The remaining part of the paper is organized as follows: In Section 2, we briefly outline
a few key facts of Drury-Arveson space, n-tuples of commuting row contractions and char-
acteristic functions of commuting row contractions. Section 3 deals with the structure of
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n-tuples of commuting row contractions, which admits polynomial characteristic functions.
Section 4 is devoted to the study of factorizations of characteristic functions of n-tuples of
noncommutative row contractions. In Section 5, we continue our discussion of factorizations
of characteristic functions in the setting of noncommutative varieties. In Section 6 we discuss
some unitary invariants of n-tuples of commuting row contractions, which admits polynomial
characteristic functions. The final section is devoted to an example to justify the regularity
assumption on commuting tuples of row contractions.

From the multivariable operator theory point of view, this is a sequel to the papers [7] and
[8] by Foias, and Foias and Pearcy, respectively, and the third author.

2. Preliminaries

In this section, we recall basic definitions and notations used in the rest of the paper.
Throughout the paper, Hilbert spaces will be denoted by H1, H2, E , E∗, etc. The set of all
bounded linear operators from H1 to H2 will be denoted by B(H1,H2). When H1 = H2,
one writes simply B(H1) instead of B(H1,H1). Now let {T1, . . . , Tn} ⊆ B(H). We say
that T = (T1, . . . , Tn) is a row contraction (or spherical contraction) if the row operator
T : Hn → H, defined by

T (h1, . . . , hn) =
n∑
i=1

Tihi (h1, . . . , hn ∈ H),

is a contraction. It is clear that T is a row contraction if and only if
n∑
i=1

‖Tihi‖2 ≤ ‖h‖2 for

all h ∈ H, or equivalently
∑n

i=1 TiT
∗
i ≤ IH. A row contraction T is said to be commuting row

contraction if TiTj = TjTi for i, j = 1, . . . , n.
A typical example of a commuting row contraction is the n-tuple of multiplication operator

(Mz1 , . . . ,Mzn) on the Drury-Arveson space H2
n, where H2

n is the reproducing kernel Hilbert
space corresponding to the kernel

k(z,w) = (1−
n∑
i=1

ziw̄i)
−1 (z,w ∈ Bn).

Here Bn denotes the open unit ball in Cn and z (and w etc.) denotes an element in Cn, that
is, z = (z1, . . . , zn) ∈ Cn. Then

H2
n = {f =

∑
α∈Zn

+

aαz
α : aα ∈ C and ‖f‖2 :=

∑
α∈Zn

+

|aα|2

γα
<∞},

where Z+ = {0, 1, 2, . . .}, α = (α1, . . . , αn) ∈ Zn+ and

γα :=
|α|!
α!

=
(
∑n

i=1 αi)!

α1! · · ·αn!
,

is the multinomial coefficient. The E-valued Drury-Arveson space will be denoted by H2
n(E).

In this case, the representation of H2
n(E) is the same as H2

n above but replacing aα ∈ C with
aα ∈ E and |aα| with ‖aα‖E . Now identifying H2

n(E) with the Hilbert space tensor product
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H2
n ⊗ E (via zαη 7→ zα ⊗ η, α ∈ Zn+ and η ∈ E), we see that (Mz1 , . . . ,Mzn) on H2

n(E) and
(Mz1 ⊗ IE , . . . ,Mzn ⊗ IE) on H2

n ⊗ E are unitarily equivalent. We shall frequently make use
of this identification. Given a commuting tuple M = (M1, . . . ,Mn) on a Hilbert space H, we
often say that M is a Drury-Arveson shift if there exists a Hilbert space W such that M and
(Mz1 , . . . ,Mzn) on H2

n(W) are unitarily equivalent.
Also recall that a holomorphic function ϕ : Bn → B(E , E∗) is said to be a (Drury-Arveson)

multiplier if

ϕH2
n(E) ⊆ H2

n(E∗).
In this case, by virtue of the closed graph theorem, it follows that the multiplication operator
Mϕ : H2

n(E) → H2
n(E∗) (where Mϕf = ϕf for all f ∈ H2

n(E)) is a bounded linear operator.
The set of all multipliers will be denoted by M(E , E∗). It also follows that M(E , E∗) is a
Banach space relative to the operator norm

‖ϕ‖ := ‖Mϕ‖B(H2
n(E),H2

n(E∗)) (ϕ ∈M(E , E∗)).
Now let T = (T1, . . . , Tn) be a row contraction on H. The defect operators and defect spaces
of T are given by

DT = (I − T ∗T )
1
2 ∈ B(Hn) and DT ∗ = (I − TT ∗)

1
2 ∈ B(H),

and

DT = ranDT ⊆ Hn and DT ∗ = ranDT ∗ ⊆ H,
respectively. For any commuting row contraction T = (T1, . . . , Tn) on H, the characteristic
function of T is a B(DT ,DT ∗)-valued analytic function θT : Bn → B(DT ,DT ∗) defined by

(2.1) θT (z) =
(
− T +DT ∗

(
IH − ZT ∗

)−1
ZDT

)
|DT

(z ∈ Bn),

where Z = (z1IH, . . . , znIH) is a row operator on H and so ZT ∗ =
n∑
i=1

ziT
∗
i for all z ∈ Bn.

Also we define Tα = Tα1
1 · · ·Tαn

n and T ∗α = T ∗α1
1 · · ·T ∗αn

n for all α = (α1, . . . , αn) ∈ Zn+, and
Pj : Hn → H by

Pj(h1, . . . , hn) = hj (h1, . . . , hn ∈ H).

Then

θT (z) =
(
− T +DT ∗

n∑
α∈Zn

+
j=1

γαT
∗αzα+ejPjDT

)
|DT

.

If we define θT,α, the coefficient of zα, α ∈ Zn+, in the Taylor series expansion of θT as

θT,α =


−T |DT

if α = 0
n∑
j=1

γα−ejDT ∗T
∗(α−ej)PjDT |DT

if α 6= 0,

then θT (z) =
∑
|α|≥0 θT,αz

α, z ∈ Bn. In what follows, we adopt the standard convention that

γα−ej = 0 and T ∗(α−ej) = I (α ∈ Zn+, αj = 0).
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It is now natural to define polynomial characteristic functions. Let T be an n-tuple of com-
muting row contraction on H and let m be a natural number. We say that the characteristic
function θT is a polynomial of degree m if

θT,α 6= 0,

for some |α| = m and θT,β = 0 for all |β| > m. If θT (z) ≡ −T |DT
, z ∈ Bn, then we say that

θT is a polynomial of degree zero. Throughout this paper, we make the convention that the
degree of the zero polynomial is zero.

A commuting tuple N = (N1, . . . , Nn) on H is said to be nilpotent of order m(> 1) if

Nα = 0 and Nβ 6= 0,

for all α in Zn+ with |α| = m and for some β in Zn+ such that |α| − |β| = 1. For a commuting
row contraction T = (T1, . . . , Tn) on H we define

(2.2) Hc :=
{
h ∈ H :

∑
|α|=k

‖T ∗αh‖2 = ‖h‖2 for all k ∈ Z+

}
.

Clearly, Hc is a closed and joint (T ∗1 , . . . , T
∗
n)-invariant subspace. Moreover, Hc is maximal,

that is, Hc is the largest closed subspace of H on which T ∗ : H → Hn acts isometrically.
The row contraction T is said to be a completely non-coisometric (c.n.c) row contraction if
Hc = {0}. The row contraction T is said to be pure if

lim
k→∞

∑
α∈Zn

+

|α|=k

‖T ∗αh‖2 = 0 (h ∈ H).

As an example, we note that the multiplication tuple (Mz1 , . . . ,Mzn) on a vector-valued
Drury-Arveson space H2

n(E) is a pure row contraction.
Finally, we recall that a pair of commuting n-tuples of row contractions (T1, . . . , Tn) and

(T
′
1, . . . , T

′
n) are said to be unitary equivalent if there exists a unitary U : H → H′ such that

Ti = UT
′
iU
∗ for all i = 1, . . . , n.

3. Polynomial Characteristic Functions

This section presents the representations of n-tuples of commuting row contractions, which
admits polynomial characteristic functions. Gleason’s problem plays a crucial role in our
consideration. We begin with the following key lemma.

Lemma 3.1. Let T = (T1, . . . , Tn) be a commuting row contraction on a Hilbert space H.
Suppose θT is a polynomial of degree m. If α ∈ Zn+ and |α| ≥ m+ 1, then

T ∗i (TαDT ∗) =
αi
|α|

(Tα−eiDT ∗),

for all i ∈ {1, . . . , n}.
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Proof. Fix i ∈ {1, . . . , n}. For each |α| ≥ m+ 1, since θ∗T,α = 0, it follows that

D2
T

n∑
j=1

γα−ejP
∗
j T

α−ejDT ∗ = 0.

Note that P ∗j : H → Hn is given by

P ∗j (h) = (0, . . . , 0, h︸︷︷︸
j-th position

, 0, . . . , 0),

for all h ∈ H. Therefore, using matrix representation of the operator D2
T , we have

I − T ∗1 T1 −T ∗1 T2 · · · −T ∗1 Tn
−T ∗2 T1 I − T ∗2 T2 · · · −T ∗2 Tn

...
...

...
−T ∗nT1 −T ∗nT2 · · · I − T ∗nTn



δα1

δα2

...
δαn

 =


0
0
...
0


where

δαj
= γα−ejT

αj−1
j Tα1

1 · · ·Tαn
n DT ∗ ,

for all α = (α1, . . . , αn) ∈ Zn+ with α ≥ m + 1 and j = 1, . . . , n. From the above identity, we
have

n∑
j=1
j 6=i

−T ∗i Tjδαj
+ (I − T ∗i Ti)δαi

= 0,

and hence

δαi
= T ∗i

( n∑
j=1

Tjδαj

)
.

Replacing δαj
= γα−ejT

αj−1
j Tα1

1 · · ·Tαn
n DT ∗ in the above identity, we get

γα−eiT
αi−1
i Tα1

1 · · ·Tαn
n DT ∗ = T ∗i

( n∑
j=1

Tj(γα−ejT
αj−1
j Tα1

1 · · ·Tαn
n DT ∗)

)
=
[ n∑
j=1

γα−ej
]
(T ∗i T

α1
1 · · ·Tαn

n DT ∗)

=
[ n∑
j=1

γα−ej
]
(T ∗i (TαDT ∗)).
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Since |α| ≥ m + 1, αk ≥ 1 for some k ∈ {1, . . . , n}. Therefore γα−ek 6= 0 for some k ∈
{1, . . . , n}. Then

T ∗i (TαDT ∗) =
γα−ei[ n∑

j=1

γα−ej
]Tαi−1

i Tα1
1 · · ·Tαn

n DT ∗

=
γα−ei[ n∑

j=1

γα−ej
](Tα−eiDT ∗).

Finally, since
γα−ei[ n∑

j=1

γα−ej
] =

αi
|α|

,

it follows that T ∗i (TαDT ∗) = αi

|α|(T
α−eiDT ∗).

Lemma 3.2. Let T be an n-tuple of commuting row contraction on H. If θT is a polynomial
of degree m, then

TαDT ∗ ⊥ T βDT ∗ ,
for all α, β ∈ Zn+, α 6= β and |α|, |β| ≥ m.

Proof. If γ ∈ Zn+, |γ| ≥ m and i = 1, . . . , n, then by Lemma 3.1, we have

(3.1) T γDT ∗ =
|γ|+ 1

γi + 1
T ∗i TiT

γDT ∗ .

Now we fix α, β ∈ Zn+ such that α 6= β and |α|, |β| ≥ m. Since α 6= β, αj 6= βj for
some j ∈ {1, . . . , n}. Without loss of generality, we assume that αj < βj. Fix an integer
k ∈ {1, . . . , n} such that k 6= j. By (3.1), we have

T βDT ∗ = ckT
∗
kTkT

βDT ∗ ,

where

ck =
|β|+ 1

βk + 1
.

By repeated applications of (3.1), we have

T βDT ∗ =
(
ck · · · ck+m+1

)
T ∗m+1
k Tm+1

k T βDT ∗ ,

for some positive scalars ck, . . . , ck+m+1. Hence for h1 and h2 in H, we have

〈TαDT ∗h1, T
βDT ∗h2〉 =

(
ck · · · ck+m+1

)
〈Tm+1

k TαDT ∗h1, T
m+1
k T βDT ∗h2〉,

where, on the other hand

〈Tm+1
k TαDT ∗h1, T

m+1
k T βDT ∗h2〉 = 〈Tαj

j Tm+1
k

(
Π
i 6=j

Tαi
i DT ∗

)
h1, T

βj
j T

m+1
k

(
Π
i 6=j

T βii DT ∗

)
h2〉

= 〈T ∗βjj T
αj

j Tm+1
k

(
Π
i 6=j

Tαi
i DT ∗

)
h1, T

m+1
k

(
Π
i 6=j

T βii DT ∗

)
h2〉.
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But

T
∗βj
j T

αj

j Tm+1
k

(
Π
i 6=j

Tαi
i DT ∗

)
= T

∗(βj−1)
j (T ∗j Tj)

(
T
αj−1
j Tm+1

k Π
i 6=j

Tαi
i DT ∗

)
= cT

∗(βj−1)
j

(
T
αj−1
j Tm+1

k Π
i 6=j

Tαi
i DT ∗

)
,

for some positive scalar c, which follows from Lemma 3.1. By setting c̃ = cck · · · ck+m+1, it
follows that

〈TαDT ∗h1, T
βDT ∗h2〉 = c̃〈T ∗(βj−1)

j

(
T
αj−1
j Tm+1

k Π
i 6=j

Tαi
i DT ∗

)
h1, T

m+1
k

(
Π
i 6=j

T βii DT ∗

)
h2〉.

Since βj > αj, applying again Lemma 3.1 (possibly finitely many times), we get a constant ĉ
such that

T
∗(βj−1)
j

(
T
αj−1
j Tm+1

k Π
i 6=j

Tαi
i DT ∗

)
= ĉT

∗(βj−αj)
j

(
Tm+1
k Π

i 6=j
Tαi
i DT ∗

)
,

and hence

〈TαDT ∗h1, T
βDT ∗h2〉 = c̃ĉ〈T ∗j

(
Tm+1
k Π

i 6=j
Tαi
i DT ∗

)
h1, T

βj−αj−1
j Tm+1

k

(
Π
i 6=j

T βii DT ∗

)
h2〉.

But once again, by Lemma 3.1, it follows that

T ∗j

(
Tm+1
k Π

i 6=j
Tαi
i DT ∗

)
= 0.

This implies that 〈TαDT ∗h1, T
βDT ∗h2〉 = 0 and completes the proof of the lemma.

Now let T be an n-tuple of commuting row contraction on H such that the characteristic
function θT is a polynomial of degree m. Set

M = span{TαDT ∗h : h ∈ H, |α| ≥ m,α ∈ Zn+},
and

N = span{TαDT ∗h : h ∈ H, |α| = m,α ∈ Zn+}.
Clearly, M is a joint T -invariant subspace of H and N ⊆M. Define

Mi := Ti|M ∈ B(M) (i = 1, . . . , n).

Then (M1, . . . ,Mn) is a commuting row contraction onM. If |α| > m, α ∈ Zn+, then Lemma
3.1 implies that

MiM
∗
i (TαDT ∗) = MiT

∗
i T

αDT ∗ =
αi
|α|

MiT
α−eiDT ∗ =

αi
|α|

TαDT ∗ ,

for all i = 1, . . . , n, and hence ( n∑
i=1

MiM
∗
i

)
|M	N = IM	N .

Moreover, if β ∈ Zn+ and |β| = m, then, again, Lemma 3.2 implies that

T ∗i T
βDT ∗ ⊥ T γDT ∗ ,
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for all i = 1, . . . , n, and γ ∈ Zn+ and |γ| ≥ m. This implies that M∗
i |N = 0 for all i = 1, . . . , n,

and hence we find

(3.2) IM − (M1M
∗
1 + · · ·+MnM

∗
n) = PN .

In particular, N = M 	
( n∑
i=1

MiM
)
. This also implies that the minimal closed joint

(M1, . . . ,Mn)-invariant subspace of M containing N is M itself. Moreover, by virtue of
Lemma 3.1, it follows easily that (M1, . . . ,Mn) is a pure tuple. We summarize these observa-
tions as follows:

Theorem 3.3. Let T = (T1, . . . , Tn) be a commuting row contraction on H. Assume that the
characteristic function of T is a polynomial of degree m. If

M = span{TαDT ∗h : h ∈ H, |α| ≥ m,α ∈ Zn+},
and Mi := Ti|M for all i = 1, . . . , n, and

N = span{TαDT ∗h : h ∈ H, |α| = m,α ∈ Zn+},
thenM is a joint closed invariant subspace for T and the restriction tuple M = (M1, . . . ,Mn)
is a commuting pure partial isometry on M. Moreover

M = span{MαN : α ∈ Zn+},
and

N =M	
( n∑
i=1

MiM
)
,

and M is the minimal closed joint M-invariant subspace of M containing N .

A priori, the above result suggests that the n-tuple M on M, up to unitary equivalence,
is just the multiplication tuple (Mz1 , . . . ,Mzn) on H2

n(N ), the N -valued Drury-Arveson shift.
It is also instructive to note that for n = 1 case [7] and for n-tuples of noncommutative
operators [17], the operator M on M is indeed the multiplication operator or the tuple of
creation operators on vector-valued Hardy space or the Fock space, respectively. However,
for n-tuples of commuting row contractions, n > 1, this is not true in general. This problem
is connected to Gleason’s property (also known as Gleasons problem) of functions on the unit
ball.

For the convenience of the reader, we recall Gleasons problem in the Drury-Arveson space.
Let w ∈ Bn and let f ∈ H2

n. If f(w) = 0, then the Gleason problem says that [1] there exist
f1, . . . , fn ∈ H2

n such that

f(z) =
n∑
i=1

(zi − wi)fi(z) (z ∈ Bn).

Then, in view of the fact that (Mz −W )(H2
n)n is a closed subspace of H2

n and
n⋂
i=1

ker(Mzi − wiIH2
n
)∗ = Ck(·,w),
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it follows that

H2
n = (Mz −W )(H2

n)n
.

+C,
for all w ∈ Bn, where

.
+ denotes the algebraic direct sum of subspaces. With this as motiva-

tion, we define regular tuples of operators [5, Section 2].

Definition 3.4. We say that a tuple of commuting bounded linear operators T = (T1, . . . , Tn)
on a Hilbert space H is regular if there exists ε > 0 such that for any ‖z‖Cn < ε the subspace
(T − Z)Hn is closed in H and

H = (T − Z)Hn
.

+
(
H	

n∑
i=1

TiH
)
.

Theorem 3.5. In the setting of Theorem 3.3, if, in addition, the n-tuple M onM is regular,
then M and the Drury-Arveson shift (Mz1 , . . . ,Mzn) on H2

n(N ) are unitary equivalent.

Proof. By (3.2), the tuple M = (M1, . . . ,Mn) on M satisfies IM −MM∗ = PN , and hence
M is a partial isometry and, in particular, M∗M |ranM∗ : ranM∗ → ranM∗ is invertible. It
follows that

(M∗M)|ranM∗ = IranM∗ ,

and hence by [5, Theorem 3.5], the map

(Uf)(z) =
∑
α∈Zn

+

γα

(
PNM

∗αf
)
zα,

defines a unitary operator U :M→ H2
n(N ) and satisfies UMi = MziU for all i = 1, . . . , n.

We continue with the setting of Theorem 3.3, and define

K = span{TαDT ∗h : h ∈ H, α ∈ Zn+},

and

Hnil = K 	M and Ni = PHnil
Ti|Hnil

,

for all i = 1, . . . , n. Clearly, Hnil is a semi-invariant subspace for T and hence

Nα = PHnil
Tα|Hnil

(α ∈ Zn+).

In particular, NiNj = NjNi for all i, j = 1, . . . , n, and

n∑
i=1

NiN
∗
i ≤ PHnil

n∑
i=1

TiT
∗
i |Hnil

≤ IHnil
,

that is, N = (N1, . . . , Nn) is a commuting row contraction on Hnil. Clearly α ∈ Zn+ with
|α| ≥ m implies TαK ⊆ M and hence Nα = 0. This shows that the commuting row
contraction N is a nilpotent tuple of order ≤ m. Moreover, we have

Tj|M⊕Hnil
=

[
Mj ∗
0 Nj

]
:M⊕Hnil →M⊕Hnil.
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Note now that h ∈ H	K if and only if h ∈ ker(DT ∗T
∗α), or, equivalently, h ∈ ker(TαD2

T ∗T
∗α)

for all α ∈ Zn+. Note also that

I −
∑
|α|=k

TαT ∗α = D2
T ∗ + (

∑
|β|=1

T βD2
T ∗T

∗β) + · · ·+ (
∑
|β|=k−1

T βD2
T ∗T

∗β),

for all k ≥ 1. This implies that h ∈ H 	 K if and only if h is in the right side of (2.2).
Moreover, H	K is a T ∗-invariant subspace of H. Consequently

Hc := H	K = {h ∈ H :
∑
|α|=k

‖T ∗αh‖2 = ‖h‖2 for all k ∈ Z+},

and
n∑
i=1

WiW
∗
i = IHc , where Wi = PHcTi|Hc for all i = 1, . . . , n. Moreover

W ∗
i W

∗
j = (T ∗i |Hc)(T

∗
j |Hc) = T ∗i T

∗
j |Hc = T ∗j T

∗
i |Hc = W ∗

jW
∗
i ,

for all i, j = 1, . . . , n. It follows that W is a commuting spherical co-isometric tuple on Hc.

Recall that an n-tuple (X1, . . . , Xn) on L is said to be a spherical co-isometry if
n∑
i=1

XiX
∗
i = IL.

Thus, we have proved:

Theorem 3.6. Let T = (T1, . . . , Tn) be a commuting row contraction on a Hilbert space H
with polynomial characteristic function of degree m. If M = span{TαDT ∗h : h ∈ H, |α| ≥
m,α ∈ Zn+}, and

Hnil = span{TαDT ∗h : h ∈ H, α ∈ Zn+} 	M,

and

Hc = {h ∈ H :
∑
|α|=k

‖T ∗αh‖2 = ‖h‖2 for all k ∈ Z+},

then H =M⊕Hnil ⊕Hc and Ti, i = 1, . . . , n admits the following matrix decomposition

(3.3) Ti =

Mi ∗ ∗
0 Ni ∗
0 0 Wi

 ,
where M on M is a pure row contraction, N on Hnil is a commuting nilpotent tuple of order
less than or equal to m and W on Hc is a commuting spherical co-isometry. Moreover,

n∑
i=1

MiM
∗
i = IM − PN ,

where N =M	
( n∑
i=1

TiM
)

. If, in addition, M is regular, then it is a Drury-Arveson shift.

The regularity assumption is essential to the final conclusion in the above theorem. We
will return in the final section with a non-trivial supporting example.
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For simplicity in what follows, we will refer to the representation (3.3) as simply the canoni-
cal representation of T with polynomial characteristic function of degree m. When the n-tuple
M of the canonical representation of T is regular, we say that T is regular.

To avoid possible confusion, we remark in passing the following:

Remark 3.7. If m = 0, then the above construction yields that Hnil = {0} and Ni = 0 for
all i = 1, . . . , n.

4. Factorizations and noncommuting tuples

We now turn to characteristic functions of noncommuting tuples introduced by Popescu
[11]. Here, following [8], we obtain an analytic structure of polynomial characteristic functions
(up to unitary equivalence) of noncommuting row contractions.

The full Fock space over Cn, denoted by Γ, is the Hilbert space

Γ :=
∞⊕
m=0

(Cn)⊗
m

= C⊕ Cn ⊕ (Cn)⊗
2 ⊕ · · · ⊕ (Cn)⊗

m ⊕ · · · .

The vacuum vector 1 ⊕ 0 ⊕ · · · ∈ Γ is denoted by e∅. Let {e1, . . . , en} be the standard
orthonormal basis of Cn and F+

n be the unital free semi-group with generators 1, . . . , n and
the identity ∅. For α = α1 · · ·αm ∈ F+

n we denote the vector eα1 ⊗ · · · ⊗ eαm by eα. Then
{eα : α ∈ F+

n } forms an orthonormal basis of Γ. For each j = 1, . . . , n, the left creation
operator Lj and the right creation operator Rj on Γ are defined by

Ljf = ej ⊗ f, Rjf = f ⊗ ej (f ∈ Γ),

respectively. Moreover, Rj = U∗LjU where U , defined by

(4.4) U(ei1 ⊗ ei2 ⊗ · · · ⊗ eim) = eim ⊗ · · · ⊗ ei2 ⊗ ei1 ,
is the flip operator on Γ. The noncommutative disc algebra A∞n is the norm closed algebra
generated by {IΓ, L1, . . . , Ln} and the noncommutative analytic Toeplitz algebra F∞n is the
WOT-closure of A∞n (see Popescu [12]).

Let E and E∗ be Hilbert spaces and M ∈ B(Γ ⊗ E ,Γ ⊗ E∗). Then M is said to be multi-
analytic operator if

M(Li ⊗ IE) = (Li ⊗ IE∗)M (i = 1, . . . , n).

In this case, the bounded linear map θ ∈ B(E ,Γ⊗ E∗) defined by

θη = M(e∅ ⊗ η) (η ∈ E),

is said to be the symbol of M and we denote M = Mθ. Moreover, define θα ∈ B(E , E∗), α ∈ F+
n

by
〈θαη, η∗〉 := 〈θη, eᾱ ⊗ η∗〉 = 〈M(e∅ ⊗ η), eᾱ ⊗ η∗〉, (η ∈ E , η∗ ∈ E∗)

where ᾱ is the reverse of α. The Fourier type representation for multi-analytic operators was
considered first by Popescu (see Popescu [18]), and from this representation, we have a unique
formal Fourier expansion

M ∼
∑
α∈F+

n

Rα ⊗ θα,
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and

M = SOT− lim
r→1−

∞∑
k=0

∑
|α|=k

r|α|Rα ⊗ θα

where |α| is the length of α. A multi-analytic operator Mθ ∈ B(Γ ⊗ E ,Γ ⊗ E∗) is said to be
purely contractive if Mθ is a contraction and

‖Pe∅⊗E∗θη‖ < ‖η‖ (η ∈ E , η 6= 0).

We say that Mθ coincides with a multi-analytic operator Mθ′ ∈ B(Γ⊗E ′,Γ⊗E ′∗) if there exist
unitary operators W : E → E ′ and W∗ : E∗ → E ′∗ such that

(IΓ ⊗W∗)Mθ = Mθ′(IΓ ⊗W ).

Let H be a Hilbert space and T = (T1, . . . , Tn) be a row operator on H. For simplicity
of the notations, we will denote by T̃ and R̃ the row operators (IΓ ⊗ T1, . . . , IΓ ⊗ Tn) and
(R1 ⊗ IH, . . . , Rn ⊗ IH) on Γ⊗H, respectively.

The characteristic function of a row contraction T on H is a purely contractive multi-
analytic operator ΘT ∈ B(Γ⊗DT ,Γ⊗DT ∗) defined by

ΘT ∼ −IΓ ⊗ T + (IΓ ⊗DT ∗)(IΓ⊗H − R̃T̃ ∗)−1R̃(IΓ ⊗DT ).

Hence
ΘT = SOT− lim

r→1
ΘT (rR̃),

where for each r ∈ [0, 1),

ΘT (rR̃) := −T̃ +DT̃ ∗(IΓ⊗H − rR̃T̃ ∗)−1rR̃DT̃ .

Therefore

ΘT = SOT− lim
r→1

ΘT (rR̃) = SOT− lim
r→1

[
− T̃ +DT̃ ∗(IΓ⊗H − rR̃T̃ ∗)−1rR̃DT̃

]
.(4.5)

Now we recall the classical result of Sz.-Nagy and Foias concerning 2×2 block contractions
(see [20], and also [6, Lemma 2.1, Chapter IV]):

Theorem 4.1. Let H1 and H2 be Hilbert spaces, A = (A1, . . . , An) ∈ B(Hn
1 ,H1), B =

(B1, . . . , Bn) ∈ B(Hn
2 ,H2) and X = (X1, . . . , Xn) ∈ B(Hn

2 ,H1) be row operators. Then the
row operator

T =

[
A X
0 B

]
∈ B(Hn

1 ⊕Hn
2 ,H1 ⊕H2),

is a row contraction if and only if A and B are row contractions and X = DA∗LDB for some
contraction L ∈ B(DB,DA∗).

Next, we recall a result [9, Theorem 2.2] concerning factorizations of characteristic functions
of noncommutative tuples, which will be used in the proof of the main theorem of this section.
Recall, given a contraction L ∈ B(H,K), the Julia-Halmos matrix corresponding to L is
defined by

JL =

[
L∗ DL

DL∗ −L

]
.
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Theorem 4.2. Let H1 and H2 be two Hilbert spaces. Suppose A on H1 and B on H2 are
n-tuples of row contractions and L ∈ B(DB,DA∗) is a contraction, and let

T =

[
A DA∗LDB

0 B

]
: Hn

1 ⊕Hn
2 → H1 ⊕H2.

Then there exist unitaries τ ∈ B(DT ,DA ⊕DL) and τ∗ ∈ B(DT ∗ ,DB∗ ⊕DL∗) such that

ΘT = (IΓ ⊗ τ−1
∗ )

[
ΘB 0
0 IΓ⊗DL∗

]
(IΓ ⊗ JL)

[
ΘA 0
0 IΓ⊗DL

]
(IΓ ⊗ τ),

where JL ∈ B(DA∗ ⊕DL,DB ⊕DL∗) is the Julia-Halmos matrix corresponding to L.

We are now ready to prove the main factorization theorem of this section. The proof uses
ideas similar to that used for Theorem 1.3 of [8].

Theorem 4.3. Let H, H1, H0 and H−1 be Hilbert spaces. Suppose H = H1 ⊕H0 ⊕H−1 and
assume that T = (T1, . . . , Tn) is a row contraction on H and

Ti =

Si ∗ ∗
0 Ni ∗
0 0 Ci

 ,
for all i = 1, . . . , n. Then S, N and C are n-tuples of row contractions on H1,H0 and H−1,
respectively, and there exist Hilbert spaces E1, E2 and E, and unitary operators

τ1 ∈ B(DN∗ ⊕ E ,DC ⊕ E1) and τ2 ∈ B(DS∗ ⊕ E2,DN ⊕ E),

such that ΘT coincides with[
ΘC 0
0 IΓ⊗E1

]
(IΓ ⊗ τ1)

[
ΘN 0
0 IΓ⊗E

]
(IΓ ⊗ τ2)

[
ΘS 0
0 IΓ⊗E2

]
.

Proof. For each i = 1, . . . , n, set Ti =

[
Ai Yi
0 Ci

]
, where Ai =

[
Si Xi

0 Ni

]
= PH1⊕H0Ti|H1⊕H0 .

Since T is a row contraction, by Theorem 4.1, A and C are row contractions and there exists
a contraction LY : DC → DA∗ such that Y = DA∗LYDC . On the other hand, since A is a
row contraction, by Theorem 4.1 again, it follows that S and N are row contractions and
X = DS∗LXDN for some contraction LX : DN → DS∗ . Now, applying Theorem 4.2 to the

row contraction T =

[
A DA∗LYDC

0 C

]
, we obtain

ΘT = (IΓ ⊗ u−1
∗ )

[
ΘC 0
0 IΓ⊗DL∗

Y

]
(IΓ ⊗ JLY

)

[
ΘA 0
0 IΓ⊗DLY

]
(IΓ ⊗ u),

for some unitary operators u ∈ B(DT ,DA ⊕ DLY
) and u∗ ∈ B(DT ∗ ,DC∗ ⊕ DL∗Y ). Note that

JLY
∈ B(DA∗ ⊕ DLY

,DC ⊕ DL∗Y ) is the Julia-Halmos matrix corresponding to LY . Again,

applying Theorem 4.2 to the row contraction A =

[
S DS∗LXDN

0 N

]
, we obtain

ΘA = (IΓ ⊗ σ−1
∗ )

[
ΘN 0
0 IΓ⊗DL∗

X

]
(IΓ ⊗ JLX

)

[
ΘS 0
0 IΓ⊗DLX

]
(IΓ ⊗ σ),
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for some unitary operators σ ∈ B(DA,DS ⊕DLX
) and σ∗ ∈ B(DA∗ ,DN∗ ⊕DL∗X ). Again note

that JLX
∈ B(DS∗ ⊕ DLX

,DN ⊕ DL∗X ) is the Julia-Halmos matrix corresponding to LX . For
convenience, we denote

ΦS =

[
ΘS 0
0 IΓ⊗DLX

]
,ΦN =

[
ΘN 0
0 IΓ⊗DL∗

X

]
, and ΦC =

[
ΘC 0
0 IΓ⊗DL∗

Y

]
.

Therefore

ΘT = (IΓ ⊗ u−1
∗ )ΦC(IΓ ⊗ JLY

)

[
(IΓ ⊗ σ−1

∗ )ΦN(IΓ ⊗ JLX
)ΦS(IΓ ⊗ σ) 0

0 IΓ⊗DLY

]
(IΓ ⊗ u)

= (IΓ ⊗ u−1
∗ )ΦC(IΓ ⊗ JLY

)

[
(IΓ ⊗ σ−1

∗ ) 0
0 IΓ⊗DLY

] [
ΦN 0
0 IΓ⊗DLY

]
×
[
(IΓ ⊗ JLX

) 0
0 IΓ⊗DLY

] [
ΦS 0
0 IΓ⊗DLY

] [
IΓ ⊗ σ 0

0 IΓ⊗DLY

]
(IΓ ⊗ u)

= (IΓ ⊗ u−1
∗ )ΦC(IΓ ⊗ τ1)

[
ΦN 0
0 IΓ⊗DLY

]
(IΓ ⊗ τ2)

[
ΦS 0
0 IΓ⊗DLY

]
(IΓ ⊗ v).

Here τ1 ∈ B((DN∗⊕DL∗X )⊕DLY
,DC⊕DL∗Y ), τ2 ∈ B((DS∗⊕DLX

)⊕DLY
, (DN ⊕DL∗X )⊕DLY

)
and ψ ∈ B(DT , (DS ⊕DLX

)⊕DY ) are unitary operators defined by

IΓ ⊗ τ1 = (IΓ ⊗ JLY
)

[
(IΓ ⊗ σ−1

∗ ) 0
0 IΓ⊗DLY

]
and IΓ ⊗ τ2 =

[
(IΓ ⊗ JLX

) 0
0 IΓ⊗DLY

]
,

and

IΓ ⊗ v =

[
IΓ ⊗ σ 0

0 IΓ⊗DLY

]
(IΓ ⊗ u).

Hence

ΘT = (IΓ ⊗ u−1
∗ )

[
ΘC 0
0 IΓ⊗E1

]
(IΓ ⊗ τ1)

[
ΘN 0
0 IΓ⊗E

]
(IΓ ⊗ τ2)

[
ΘS 0
0 IΓ⊗E2

]
(IΓ ⊗ v),

where E1 = DL∗Y , E2 = DLX
⊕ DLY

and E = DL∗X ⊕ DLY
. This completes the proof of the

theorem.

The following corollary is a noncommutative generalization of [8, Theorem 2.2].

Corollary 4.4. Assume the setting of Theorem 4.3. If S is an isometry and C is a spherical
co-isometry, then there exist a Hilbert space E, a co-isometry G1 ∈ B(Γ⊗ (DN∗⊕E),Γ⊗DT ∗)
and an isometry G2 ∈ B(Γ⊗DT ,Γ⊗ (DN ⊕ E)) such that

ΘT = G1

[
ΘN 0
0 IΓ⊗DE

]
G2.

Proof. Since DS = {0Hn
1
} and DC∗ = {0H−1}, by assumption, it follows that the characteristic

functions ΘS : Γ⊗DS → Γ⊗DS∗ and ΘC : Γ⊗DC → Γ⊗DC∗ are identically zero, that is,

0S := ΘS ≡ 0 : Γ⊗ {0Hn
1
} → Γ⊗DS∗ and 0C := ΘC ≡ 0 : Γ⊗DC → Γ⊗ {0H−1}.
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In this case, the unitary operators u∗, σ and v in the proof of Theorem 4.3 become

u∗ ∈ B(DT ∗ , {0H−1} ⊕ DL∗Y ) and σ ∈ B(DA, {0Hn
1
} ⊕ DLX

),

and v ∈ B(DT , ({0Hn
1
} ⊕ DLX

) ⊕ DY ), respectively. Then the representation of ΘT , as given
in the final part of the proof of Theorem 4.3, becomes

ΘT = G1

[
ΘN 0
0 IΓ⊗(DL∗

X
⊕DLY

)

]
G2,

where E = DL∗X ⊕DLY
and

G1 = (IΓ ⊗ u−1
∗ )

[
0C 0
0 IΓ⊗DL∗

Y

]
(IΓ ⊗ τ1) ∈ B(Γ⊗ (DN∗ ⊕ E),Γ⊗DT ∗),

and

G2 = (IΓ ⊗ τ2)

[
0S 0
0 IΓ⊗(DLX

⊕DLY
)

]
(IΓ ⊗ v) ∈ B(Γ⊗DT ,Γ⊗ (DN ⊕ E)).

Since 0C0∗C = IΓ⊗{0H−1
} and 0∗S0S = IΓ⊗{0Hn

1
}, it follows that G1G

∗
1 = IΓ⊗DT∗ and G∗2G2 =

IΓ⊗DT
. This completes the proof.

In view of Popescu [17, Theorem 1.1], the following corollary is now more definite:

Corollary 4.5. Let T be a be a row contraction on H such that the characteristic function
ΘT is a noncommutative polynomial of degree m. Then there exist a Hilbert space E, a
nilpotent row contraction N = (N1, . . . , Nn) of order ≤ m, such that

ΘT = G1

[
ΘN 0
0 IΓ⊗DE

]
G2,

where G1 and G2 are co-isometry and isometry in B(Γ ⊗ (DN∗ ⊕ E),Γ ⊗ DT ∗) and B(Γ ⊗
DT ,Γ⊗ (DN ⊕ E)), respectively.

Proof. Since T is a row contraction with a noncommutative polynomial of degree m, by [17,
Theorem 1.1], there exist closed subspaces H−1, H0 and H1 of H such H = H−1 ⊕H0 ⊕H1

and the matrix representation of Ti is given by

Ti =

Si ∗ ∗
0 Ni ∗
0 0 Ci

 ,
for all i = 1, . . . , n, where S is a row isometry on H1, N is a nilpotent row contraction of
order ≤ m on H0 and C is a spherical co-isometry on H−1. The remaining part of the proof
now directly follows from Corollary 4.4.
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5. Constrained Row Contractions and Factorizations

In this section, we describe the factorization results obtained in the previous section in
the setting of constrained row contractions. Constrained row contractions are related to the
notion of noncommutative varieties, which was introduced by G. Popescu in [13]. The added
complications and structures of noncommutative varieties are due mostly to the fact, as for
example, that the Drury-Arveson space is a quotient space of the full Fock space (see [13, 16]).

First, we recall the basic features of constrained row contractions and noncommutative
varieties and refer the reader to Popescu [13, 16] for further details.

Let PJ ⊂ F∞n be a set of noncommutative polynomials, and let J be the WOT-closed two
sided ideal of F∞n generated by PJ . In what follows, we always assume that J 6= F∞n . Then

MJ := span{φ⊗ ψ : φ ∈ J, ψ ∈ Γ} and NJ := Γ	MJ

are proper joint (L1, . . . , Ln) and (L∗1, . . . , L
∗
n) invariant subspaces of Γ, respectively. Define

constrained left creation operators and constrained right creation operators on NJ by

Vj := PNJ
Lj|PNJ

and Wj := PNJ
Rj|PNJ

(j = 1, . . . , n),

respectively. Let E and E∗ be Hilbert spaces, and let M ∈ B(NJ ⊗ E ,NJ ⊗ E∗). Then M is
said to be constrained multi-analytic operator if

M(Vj ⊗ IE) = (Vj ⊗ IE∗)M (j = 1, . . . , n).

A constrained multi-analytic operator M ∈ B(NJ⊗E ,NJ⊗E∗) is said to be purely contractive
if M is a contraction, e∅ ∈ NJ and

‖Pe∅⊗E∗M(e∅ ⊗ η)‖ < ‖η‖ (η 6= 0, η ∈ E).

LetW(W1, . . . ,Wn) denote the WOT-closed algebra generated by {I,W1, . . . ,Wn} and R∞n =
U∗F∞n U , where U is the flipping operator (see (4.4)). The following equality, due to Popescu
[13], is often useful:

W(W1, . . . ,Wn) ⊗̄ B(E , E∗) = PNJ⊗E∗ [R∞n ⊗̄ B(E , E∗)]|PNJ⊗E
.

Recall also that a row contraction T = (T1, . . . , Tn) on H is said to be J-constrained row
contraction, or simply constrained row contraction if J is clear from the context, if

p(T1, . . . , Tn) = 0 (p ∈ PJ).

The constrained characteristic function ΘJ,T (see Popescu [13]) of a constrained row contrac-
tion T = (T1, . . . , Tn) on a Hilbert space H is defined by

ΘJ,T = PNJ⊗DT∗ΘT |NJ⊗DT
.

Note that ΘJ,T is a pure constrained multi-analytic operator ΘJ,T : NJ ⊗ DT → NJ ⊗ DT ∗ .
Moreover, since NJ ⊗DT ∗ is a joint (R∗1 ⊗ IDT∗ , . . . , R

∗
n ⊗ IDT∗ ) invariant subspace and Wi ⊗

IDT∗ = (PNJ
Ri|PNJ

)⊗ IDT∗ , i = 1, . . . , n, it follows that (see [13])

Θ∗T (NJ ⊗DT ∗) ⊂ NJ ⊗DT and ΘT (MJ ⊗DT ) ⊂MJ ⊗DT ∗ .(5.6)

The starting point of our consideration of constrained row contractions is the following
result [9, Theorem 3.1]:
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Theorem 5.1. Let A on H1 and B on H2 be n-tuples of row contractions, and let L ∈

B(DB,DA∗) be a contraction. If T =

[
A DA∗LDB

0 B

]
is a constrained row contraction on

H1⊕H2, then A and B are also constrained row contractions and there exist unitary operators
σ ∈ B(DT ,DA ⊕DL) and σ∗ ∈ B(DT ∗ ,DB∗ ⊕DL∗) such that

ΘJ,T = (IN ⊗ σ−1
∗ )

[
ΘJ,B 0

0 IN⊗DL∗

]
(IN ⊗ JL)

[
ΘJ,A 0

0 IN⊗DL

]
(IN ⊗ σ)

where JL ∈ B(DA∗ ⊕DL,DB ⊕DL∗) is the Julia-Halmos matrix corresponding to L.

We are now ready to prove the factorization result for constrained row contractions. How-
ever, the proof is similar in spirit to that of Theorem 4.3, and thus, we only sketch it.

Theorem 5.2. Let H, H1, H0 and H−1 be Hilbert spaces, H = H1 ⊕H0 ⊕H−1. Suppose

Ti =

Si ∗ ∗
0 Ni ∗
0 0 Ci

 (i = 1, . . . , n).

If T is a constrained row contraction, then S, N and C are also constrained row contractions
on H1,H0 and H−1, respectively, and there exist Hilbert spaces E1, E2 and E and unitary
operators τ1 ∈ B(DN∗ ⊕ E ,DC ⊕ E1) and τ2 ∈ B(DS∗ ⊕ E2,DN ⊕ E) such that ΘJ,T coincides
with [

ΘJ,C 0
0 IN⊗E1

]
(IN ⊗ τ1)

[
ΘJ,N 0

0 IN⊗E

]
(IN ⊗ τ2)

[
ΘJ,S 0

0 IN⊗E2

]
.

Proof. We use the same notations as in the proof of Theorem 4.3: Ti =

[
Ai Yi
0 Ci

]
, where Ai =[

Si Xi

0 Ni

]
= PH1⊕H0Ti|H1⊕H0 for all i = 1, . . . , n. By Theorem 4.1 and first part of Theorem

5.1, we already know that A and C are constrained row contractions and Y = DA∗LYDC for
some contraction LY : DC → DA∗ . Repeating the argument to the constrained row contraction
A, we obtain that S and N are also constrained row contractions and X = DS∗LXDN for
some contraction LX : DN → DS∗ . Then, applying Theorem 5.1 to the constrained row

contractions T =

[
A DA∗LYDC

0 C

]
and A =

[
S DS∗LXDN

0 N

]
, we find

ΘJ,T = (IN ⊗ u−1
∗ )

[
ΘJ,C 0

0 IN⊗DL∗
Y

]
(IN ⊗ JLY

)

[
ΘJ,A 0

0 IN⊗DLY

]
(IN ⊗ u),

for some unitary operators u ∈ B(DT ,DA ⊕DLY
) and u∗ ∈ B(DT ∗ ,DC∗ ⊕DL∗Y ), and

ΘJ,A = (IN ⊗ σ−1
∗ )

[
ΘJ,N 0

0 IN⊗DL∗
X

]
(IN ⊗ JLX

)

[
ΘJ,S 0

0 IN⊗DLX

]
(IN ⊗ σ),
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for some unitary operators σ ∈ B(DA,DS ⊕DLX
) and σ∗ ∈ B(DA∗ ,DN∗ ⊕DL∗X ). Finally, by

the same reasoning as in the proof of Theorem 4.3, it follows that

ΘJ,T = (IN ⊗ u−1
∗ )

[
ΘJ,C 0

0 IN⊗E1

]
(IN ⊗ τ1)

[
ΘJ,N 0

0 IN⊗E

]
(IN ⊗ τ2)

[
ΘJ,S 0

0 IN⊗E2

]
(IN ⊗ v),

where E1 = DL∗Y , E2 = DLX
⊕ DLY

and E = DL∗X ⊕ DLY
, and τ1 : (DN∗ ⊕ DL∗X ) ⊕ DLY

→
DC ⊕DL∗Y , τ2 : (DS∗ ⊕DLX

)⊕DLY
→ (DN ⊕DL∗X )⊕DLY

and v : DT → (DS ⊕DLX
)⊕DLY

are unitary operators defined by

IN ⊗ τ1 = (IN ⊗ JLY
)

[
(IN ⊗ σ−1

∗ ) 0
0 IN⊗DLY

]
and IN ⊗ τ2 =

[
(IN ⊗ JLX

) 0
0 IN⊗DLY

]
,

and

IN ⊗ v =

[
IN ⊗ σ 0

0 IN⊗DLY

]
(IN ⊗ u).

This completes the proof of the theorem.

The particular case of constrained row contractions where the noncommutative variety is
given by

PJc = {LiLj − LjLi : i, j = 1, . . . , n},
gives rise to commuting row contractions on Hilbert spaces. In this case, NJc becomes the
symmetric Fock space Γs and the n-tuple V on Γs, where Vj = PΓsLj|Γs , j = 1, . . . , n,
becomes the left creation operators on Γs (see [4, 13],). More specifically, V on NJc and
(Mz1 , . . . ,Mzn) on H2

n are unitarily equivalent, where H2
n is the Drury-Arveson space and Mzi

is the multiplication operator by the coordinate function zi on H2
n, i = 1, . . . , n. Under this

identification, PΓsF∞n |Γs corresponds toM(H2
n), the multiplier algebra of H2

n (see also Section
2).

From this point of view, if T on H is a constrained row contraction corresponding to PJc ,
then TiTj = TjTi for all i, j = 1, . . . , n, and one can identify the constrained characteris-
tic function ΘJc,T = PNJc⊗DT∗ΘT |NJc⊗DT

with the B(DT ,DT ∗)-valued multiplier θT : Bn →
B(DT ,DT ∗) in M(DT ,DT ∗) [3, 4, 13], the characteristic function of the commuting tuple T
(see (2.1)). In the remaining part of this paper, the identification of ΘJc,T and θT will be used
interchangeably.

The first half of the following theorem is essentially a particular (the commutative) case of
Theorem 5.2. The partially isometric property of V2 in the remaining part is a special feature
of n-tuples, n > 1, of commuting row contractions.

Theorem 5.3. Let H1, H0 and H−1 be Hilbert spaces, and let T = (T1, . . . , Tn) be an n-tuple
of commuting row contraction on H1 ⊕H0 ⊕H−1 such that each Ti has the following matrix
representation

Ti =

Si ∗ ∗
0 Ni ∗
0 0 Ci

 (i = 1, . . . , n).
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with respect to H1 ⊕ H0 ⊕ H−1. Then S on H1, N on H0 and C on H−1 are commuting
row contractions, and there exist Hilbert spaces E1, E2 and E, and unitary operators U1 ∈
B(DN∗ ⊕ E ,DC ⊕ E1) and U2 ∈ B(DS∗ ⊕ E2,DN ⊕ E) such that θT coincides with[

θC 0
0 IH2

n⊗E1

]
(IH2

n
⊗ U1)

[
θN 0
0 IH2

n⊗E

]
(IH2

n
⊗ U2)

[
θS 0
0 IH2

n⊗E2

]
.

In addition, if S and C are Drury-Arveson shift and spherical co-isometry, respectively, then
there exist a Hilbert space E, a co-isometry G1 ∈ (H2

n ⊗ (DN∗ ⊕ E), H2
n ⊗ DT ∗) and a partial

isometry G2 ∈ (H2
n ⊗DT , H2

n ⊗ (DN ⊕ E)) such that

θT = G1

[
θN 0
0 IΓ⊗E

]
G2.

Proof. We only need to prove the second half. Since C is a spherical co-isometry, DC∗ = 0,
and hence DC∗ = {0H−1}. On the other hand, since S is the Drury-Arveson shift, θS is
identically zero [15, Proposition 2.6]. Therefore, the unitary operators u∗, σ and v and the
characteristic function ΘJ,T , in terms of θT , in the proof of Theorem 5.2 becomes

u∗ ∈ B(DT ∗ , {0H−1} ⊕ DL∗Y ), σ ∈ B(DA,DS ⊕DLX
), and v ∈ B(DT , (DS ⊕DLX

)⊕DLY
),

and

θT = G1

[
θN 0
0 IH2

n⊗(DL∗
X
⊕DLY

)

]
G2,

respectively, where E = DL∗X ⊕DLY
,

G1 = (IH2
n
⊗ u−1

∗ )

[
0C 0
0 IH2

n
⊗DL∗Y

]
(IH2

n
⊗ U1) ∈ B(H2

n ⊗ (DN∗ ⊕ E), H2
n ⊗DT ∗),

G2 = (IH2
n
⊗ U2)

[
0S 0
0 IH2

n⊗(DLX
⊕DLY

)

]
(IH2

n
⊗ v) ∈ B(H2

n ⊗DT , H2
n ⊗ (DN ⊕ E)).

Since 0C0∗C = IH2
n⊗{0H−1

} and 0S ≡ 0, it is clear that G1 is an co-isometry and G2 is a partial
isometry.

If N onH0 is nilpotent of order m, then the above result clearly yields that the characteristic
function θT is a polynomial of degree ≤ m. Moreover, in view of Theorem 3.6, we have the
following:

Theorem 5.4. Let T = (T1, . . . , Tn) be an n-tuple of commuting row contraction on a Hilbert
space H such that θT is a polynomial of degree m, and let

M = Span{TαDT ∗h : h ∈ H, |α| ≥ m,α ∈ Zn+}.
If T is regular, then there exist a Hilbert space E, a co-isometry G1 ∈ B(H2

n⊗ (DN∗⊕E), H2
n⊗

DT ∗) and a partial isometry G2 ∈ B(H2
n ⊗DT , H2

n ⊗ (DN ⊕ E)) such that

θT = G1

[
θN 0
0 IH2

n⊗DE

]
G2.

Note that if n = 1, then the partial isometry G2 becomes an isometry (see [8, Theorem
2.2]).
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6. Uniqueness of the canonical representations

Recall that the canonical representation of a commuting row contraction T with polynomial
characteristic function of degree m is the upper triangular representation of Ti on H =
M⊕ Hnil ⊕ Hc as in Theorem 3.6. In this section, we analyze the structure of canonical
representations of commuting row contractions with polynomial characteristic functions.

We first prove thatM and Hc of the canonical representation are optimal in an appropriate
sense (see [17, Proposition 2.1] for n-tuples of noncommutative row contractions).

Theorem 6.1. Let T be an n-tuple of commuting row contraction on a Hilbert space H such
that θT is a polynomial of degree m and also T is regular. Suppose H1, H0 and H−1 are
Hilbert spaces, and let H = H1⊕H0⊕H−1. If the matrix representation of Ti with respect to
H = H1 ⊕H0 ⊕H−1 is given by

Ti =

M ′
i ∗ ∗

0 N
′
i ∗

0 0 W
′
i

 (i = 1, . . . , n),

where M ′ on H1 is a Drury-Arveson shift, N ′ on H0 is nilpotent of order m and W
′

on H−1

is a spherical co-isometry, then M⊆ H1 and Hc ⊇ H−1.

Proof. Since W ′ is a spherical co-isometry, with respect toH = H1⊕H0⊕H−1, we have D2
T ∗ =∗ ∗ ∗∗ ∗ ∗

∗ ∗ 0

. If DT ∗ =

 ∗ ∗ A31

∗ ∗ A32

A31 A32 A33

, then D2
T ∗ =

∗ ∗ ∗
∗ ∗ ∗
∗ ∗ A31A

∗
31 + A32A

∗
32 + A33A

∗
33

,

and hence A31A
∗
31 + A32A

∗
32 + A33A

∗
33 = 0. It follows that A31 = A32 = A33 = 0. Therefore

DT ∗ =

∗ ∗ 0
∗ ∗ 0
0 0 0

, and hence on H = H1 ⊕H0 ⊕H−1, we have

TαDT ∗ =

M ′α ∗ ∗
0 0 ∗
0 0 W

′α

∗ ∗ 0
∗ ∗ 0
0 0 0

 =

∗ ∗ 0
0 0 0
0 0 0

 ,
and TαDT ∗H ⊆ H1 for all α ∈ Zn+ with |α| ≥ m. Then, M⊆ H1, where, on the other hand,

H−1 ⊆ Hc as Hc is the maximal closed joint T ∗ invariant subspace of H such that

T ∗1 |Hc

...
T ∗n |Hc


is an isometry.

Now we prove that the diagonal entries of the canonical representation of T , as in Theorem
3.6, is a complete unitary invariant. The noncommutative version of this is due to Popescu
[17, Proposition 2.1].
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Proposition 6.2. Let T on H and T ′ on H′ be n-tuples of commuting row contractions with
polynomial characteristic functions of degree m. Assume that

Ti =

Mi ∗ ∗
0 Ni ∗
0 0 Wi

 and T
′

i =

M ′
i ∗ ∗

0 N
′
i ∗

0 0 W
′
i

 (i = 1, . . . , n),

are the canonical representations of T and T ′ on H =M⊕Hnil⊕Hc and H′ =M′⊕H′nil⊕H
′
c

respectively. If U : H → H′ is a unitary operator such that UTi = T ′iU for all i = 1, . . . , n, then
UM =M′

, UHnil = H′nil and UHc = H′c, and (U |M)Mi = M
′
i (U |M), (U |Hnil

)Ni = N
′
i (U |Hnil

)
and (U |Hc)Wi = W

′
i (U |Hc) for all i = 1, . . . , n.

Proof. Clearly, UTj = Tj
′U and UT ∗j = T

′∗
j U for j = 1, . . . , n, implies that UTαDT ∗ =

T
′αDT ′∗U , α ∈ Zn+, and, on the other hand, we have by definition UM = M′

. Moreover,
since

‖T ′∗α(Uh)‖2 = ‖UT ∗αh‖2 = ‖T ∗αh‖2,

for all α ∈ Zn+ and h ∈ Hc, it follows that UHc = H′c, and hence UHnil = H′nil. The remaining

part now follows from the representation U =

U |M 0 0
0 U |Hnil

0
0 0 U |Hc

.

For convenience, and following Popescu [17], we introduce the following notation. Denote
Z+ ∪ {∞} by N∞ and denote by Cn the set of all n-tuples of commuting row contractions
on Hilbert spaces. We define ϕ : Cn → N∞ × N∞ × N∞ as follows: Let T be an n-tuple of
commuting row contraction on H. Define

ϕ(T ) = (p,m, q),

where m := deg θT , q := dim{h ∈ H :
∑
|α|=k ‖T ∗

αh‖2 = ‖h‖2, for all k ∈ Z+} and

p :=

{
dim(Dm 	Dm+1) if m ∈ Z+

dimDT ∗ if m =∞,

and Dm := span{TαDT ∗h : h ∈ H, |α| ≥ m}.
Clearly, if a pair T and T

′
in Cn are unitarily equivalent, then ϕ(T ) = ϕ(T

′
). For T ∈ Cn

such that ϕ(T ) ∈ N∞ × {0} × {0}, we have the following:

Theorem 6.3. Let T, T ′ ∈ Cn.

(i) T is a Drury-Arveson shift if and only if T is regular and ϕ(T ) ∈ N∞ × {0} × {0}.
(ii) If T and T

′
are regular and ϕ(T ) = ϕ(T

′
) = (p, 0, 0) for some p ∈ N∞, then T and T

′

are unitary equivalent and rankDT ∗ = rankDT ′∗ = p.

Proof. (i) To prove the necessary part, without loss of generality, assume that T is Mz on
H2
n(E) for some Hilbert space E . Observe that since θMz ≡ 0, we have m = 0. Also note that

DT ∗ = PC ⊗ IE , which implies DT ∗ = C⊗ E . Since

span{TαDT ∗h : h ∈ H, α ∈ Zn+} 	 span{TαDT ∗h : h ∈ H, |α| ≥ 1} = C⊗ E ,
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it follows that p = dim E = rankDT ∗ ∈ N∞. Since T is pure, Hc = {0}, and so q = dimHc = 0.
Thus ϕ(T ) ∈ N∞ × {0} × {0}. For the converse, assume that T is regular and ϕ(T ) ∈
N∞×{0}×{0}. Therefore, since m = q = 0, Theorem 3.6 implies that Hnil = {0},Hc = {0},
that is, T is a Drury-Arveson shift.

(ii) This follows from part (i) and the fact that the multiplicity is a complete set of unitary
invariant of Drury-Arveson shifts.

The noncommutative version of the above result is due to Popescu [17, Theorem 2.2]. Now
we turn to pure row contractions in Cn. The proof is completely analogous to the proof of
[17, Theorem 2.4 (i)].

Proposition 6.4. Let T be an n-tuple of commuting row contraction with polynomial char-
acteristic function. Then T is pure if and only if ϕ(T ) ∈ N∞ × Z+ × {0}.

Proof. Assume that T is pure. Consider the canonical representation of T onM⊕Hnil ⊕Hc

as in Theorem 3.6. For each h ∈ Hc, it follows that T ∗αh = W ∗αh and hence

‖h‖2 =
∑
|α|=k

‖W ∗αh‖2 =
∑
|α|=k

‖T ∗αh‖2,

for all k ∈ N. Since T is pure, this implies that Hc = {0}, that is, ϕ(T ) ∈ N∞ × Z+ × {0}.
Conversely, if ϕ(T ) ∈ N∞ × Z+ × {0}, then Hc = {0}. The canonical representation of T as

in Theorem 3.6 then becomes Ti =

[
Mi ∗
0 Ni

]
on H =M⊕Hnil. Suppose m is the order of

the nilpotent operator N . Then for each α ∈ Zn+, |α| = m, there exists Xα ∈ B(Hnil,M) such

that Tα =

[
Mα Xα

0 0

]
. By a computation similar to that in [17, Theorem 2.4 (i)], we obtain

that T is pure.

Along similar lines, most of Popescu’s results in [17, Section 2] hold in a similar way for
n-tuples of commuting contractions. We only point one which needs an additional assumption.

Theorem 6.5. Let T be an n-tuple of commuting contractions on a Hilbert space with poly-
nomial characteristic function. If T is regular, then the following are equivalent:

(1) θT is constant.
(2) ϕ(T ) ∈ N∞ × {0} × N∞.

(3) The canonical decomposition of T is given by: Ti =

[
Mi ∗
0 Wi

]
on H = M ⊕ Hc,

i = 1, . . . , n, where (M1, . . . ,Mn) is a Drury-Arveson shift on M and (W1, . . . ,Wn) is
a spherical co-isometry on Hc.

Proof. The proof follows from the definition of the map ϕ and the canonical representation
of the row contraction T with polynomial characteristic function.

7. An example

In this section, we provide an example of a commuting tuple, which is a partial isometry
with wandering subspace property, but whose characteristic function is not a polynomial.
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Therefore, the tuple is not unitarily equivalent to the Drury Arveson shift tuple. This justifies
the presence of the regularity assumption in the Theorem 3.6.

We consider a subspace of H2
2 which is invariant under the Drury-Arveson shift. That is,

M :=
⊕
n≥2

Hn ⊆ H2
2 ,

where Hn denotes the class of homogeneous polynomials of degree n and a commuting pair
of bounded linear operators V = (V1, V2) on M, defined by

Vi := Mzi |M for i = 1, 2.

By using the definition of the adjoint of the Drury-Arveson shift, it is trivial to observe
that for each i = 1 and 2,

ViV
∗
i z

α =

{
αi

|α|z
α if |α| ≥ 3

0 otherwise.

From the definition of Vi’s, one can easily derive D2
V ∗ = I −

∑2
i=1 ViV

∗
i = PH2 , where PH2 is

an orthogonal projection onto the subspace H2. Hence, V is a row contraction on M, and
we recall the expression of the characteristic function of V , given in 2.1, and the Taylor series
expansion, that is,

ΘV (z) = [−V +DV ∗(I − ZV ∗)−1ZDV ]|DV

= (−V +
∑
|α|≥1

ΘV,αz
α)|DV

,

where for each α with |α| ≥ 1 the coefficients ΘV,α =
∑2

i=1 γα−eiDV ∗V
∗(α−ei)PiDV . Also due

to the fact that, ImV ⊆
⊕

n≥3 Hn, we have V DV = DV ∗V = PH2V = 0.

On the other hand, from the definition of the defect operator D2
V : M⊕M →M⊕M,

the action on the elements (zα1
1 , zα1

1 )tr with α1 ≥ 2 is the following

D2
V

[
zα1

1

zα1
1

]
=

[
I − V ∗1 V1 −V ∗1 V2

−V ∗2 V1 I − V ∗2 V2

] [
zα1

1

zα1
1

]
=

[ −α1

α1+1
zα1−1

1 z2
−α1

α1+1
zα1

1

]
.

Now, for any α1 ≥ 2, we consider β = (α1 − 1, 0) and we have

ΘV,β

[ −α1

α1+1
zα1−1

1 z2
−α1

α1+1
zα1

1

]
= γβ−e1PH2V

∗(α1−2)
1

( −α1

α1 + 1
zα1−1

1 z2

)
= γβ−e1PH2

(
− cα1z1z2

)
= dα1z1z2,

where dα1 = −γβ−e1cα1 for some non-zero constant cα1 . Hence, ΘV,β 6= 0. Moreover, we can
conclude that for each α = (α1, 0) with α1 ≥ 2, ΘV,β 6= 0 where β = (α1 − 1, 0). In other
words, there are infinitely many β’s for which ΘV,β 6= 0, that is, the characteristic function
ΘV is not a polynomial.

Following the above calculation, it is straightforward to conclude that V is a pure partial
isometry, but it is not unitary equivalent to Drury-Arveson shift as its characteristic function
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is not the zero polynomial. By [Corollary 3.10, [5]], it follows that the tuple V = (V1, V2) is
not regular in the sense of Definition 3.4.
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[20] B. Sz.-Nagy and C. Foiaş, Forme triangulaire d’une contraction et factorisation de la fonction car-
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